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Diffusion in disordered media as a process with memory
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The problem of a random walk in disordered media is mapped into a model of a random walk with memory.
The latter model, as opposed to the former one, does not make reference to a particular realization of the
disorder. The equivalence of the two models implies that the latter model retrieves dynamically a realization of
disorder; the only one which is consistent with its dynamics. In this latter approach to the dynamics in
disordered media, effects of memory, aging and the peculiar localization properties of the random walker,
appear quite natura] S1063-651X96)50808-]

PACS numbsgs): 05.40:+j, 66.30—h, 63.90+t

The dynamics of disordered systems is a very active subsrganization is a simple consequence of a more general re-
ject of research of statistical physics. In nonequilibrium sysdation between dynamical processes with memory and self-
tems, such as driven interface grovfl] and charge density organization5].
waves,[2] disorder leads to very interesting effects, such as The purpose of this paper is to apply the same consider-
depinning transitions, creep phenomena, and selfations to an equilibrium system. We shall deal with the sim-
organization. In out of equilibrium systems, like spin glassesplest such system, i.e., a one-dimensional random walk in
aging effects arise which, at least at a mean field level, hasandom environment. For this we will derive the exact cor-
been related to the lack of time translational invariance andesponding annealed dynamics. This dynamics, by definition,
the failure of fluctuation dissipation relatiof3]. The main  does not depend on any particular realization of the disorder.
complication brought by the presence of disorder is that, inqowever, as we shall see, the process has the same statistical
order to compute a physical quantity, apart from the “dy-properties. Asymptotically, for large times, the process
namic” average over different stochastic time evolutions,gingles out a particular realization of the disorder, which is

quenched dynamics requires a second average over the regle onjy one which is consistent with the past history of the
izations of disorder. This, operationally, implies that one ha: rocess. A simple generalization of the dynamics with

to evolve the system in several disorder configurations and emory we find, shows that, interestingly enough, the disor-

the end average the result over the realizations of d'sor.deEiered dynamics lies on the borderline between random dy-
On one hand, the dynamics explicitly depends on the particu-

lar realization of the disordeftypically through transition namics and deterministic dynamics. The random walker, in

ates. O the oher, i most systems, ane expects he physfh® B <252, il sooner o aer oz o <one st
cal quantities to be self-averaging and therefore to depend Y, 9 9 P

. : : e a random walk with traps and draw some conclusions.
weakly on the disorder configuration. This situation is rather The random random wallRRW) on a line is defined by

unsatisfactory, in our opinion, because only after this second .~ o PR i
average over disorder it is possible to appreciate the generSPS'gnmg at each sie=0,21x2,... arandom variable

features of the dynamics. It has recently been pointed4jut Pi €[01] drawn from a distribution P{p=p,

that this problem can be overcome in nonequilibrium model <p+d.p}= qﬁ_(p)dp. The evolution .Of the pos!t!owt of the
based on extreme dynamics, by appealing to an anneal W is defined byx;.;=x+1 with probability Px, and
dynamics(we shall use this term as opposed to quenchedt+1=X;—1 otherwise. In spite of its simplicity this model
dynamic$ which does not make reference to a particularhas been studied by many authors as a toy model for local-
realization of disorder. The advantage of this point of view isization, [6] depinning transitions|,7] and aging effect$8].

that only the average over different stochastic time evolu-The most striking feature is that the diffusion is extremely
tions needs to be taken: the effective dynamics is indeeglow: the typical size visited by the walker after a times
such that the averages over disorder are taken in “run time,"8x~ (Int)>. Comparing this result, originally derived rigor-
i.e., at each time step, by the process itself. Moreover, thigusly by Sinai[9] with the diffusion of a random walk with-
approach provides also the statistical weight of the history oput disorder,dx~ \t, suggests that disorder has really dra-
the process, which is hardly available in dynamics with dis-matic effects on the dynamics.

order. The key point, in the derivation of such annealed dy- In order to introduce our model, let us consider the case of
namics, is that the future evolution has to be statisticallya uniform distribution ¢(p)=1. Imagine observing the
consistent with the past history. The mathematical translatiomwalker in its motion, without knowing the realizatigp;} of

of this principle relies on the concept of conditional probabil-the disorder. The only information available is what one
ity. The process thus acquires time dependences, which nataees, namely, the number, ; of times that the random
rally explain the emergence of memory effects in quenchedvalker has visited sité and the numbek; ; of times in
dynamics. It has also been shown that, from this point ofwvhich it has moved from siteto sitei + 1. As we shall now
view, the relation between extremal dynamics and selfshow, it is possible, using this information, to describe a
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RRW even if the values gb; are not known. This is accom-
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variables by analyzing the moments of the effective transi-

plished by observing that the probability that the number oftion probability p;(n;) = pﬁi K- Dropping thei index for the

right jumpsi—i+1 is k, given that siteé has been visited
n times and the transition probability ig;=p, is simply
given by the binomial distribution

D

n
P(kln,p)=(k p(1-p)"7 ",
where the notatiod?(A|B) stands for the probability of the
eventA, conditional to the occurrence &. Regardingk as
the “effect” of the “cause” p, we can invert this statistical
relation to obtain the probability dP(p|n,k) that
p<p;<p+dp given k andn. Using Bayes rule of causes
(see, [10] p. 1249, it is easy to find that
dP(p|n,k)=(n+1)P(k|n,p)dp. From this we can obtain
an “effective” transition probability

. k+1
pn,k=f dP(p[n,k)p= 2

n+2’

where the last equality holds fap(p)=1 (see later. The

moment, one observes that at the—<1)st visit p(n—1)9,

with probability p(n—1), increases to
[(n+L)p(n—1)+1/mn+2]9 while with probability
1-p(n—1) it becomes[(n+1)p(n—1)/n+2]9. Taking

the average over realizations leads to a recursion relation for
the moments ofp(n) which, with a little algebra, can be
solved to find

n+1 q

: ()

k
n+2

n+1¢=1

Mq(n):<p(n)q>:

Note thatM(n)=1/2 for all n. Moreover, all central mo-
ments([ p(n) —{p(n))]% with q odd vanish identically. For
n>1, one easily findd4(n)=(1+q) '+0O(n" 1), i.e., the
moments ofp(n) tend indeed to those of a uniform distribu-
tion in [0,1]. Therefore, the distribution of the transition
probabilities, for a RWM in a box of sizé with periodic
boundary conditions, will asymptotically tend taSdunction
around a random valu@; whose statistics is uniform in

content of Eq(2) is that, among all the processes and all the[ 0,1]. However, strictly speaking, even with periodic bound-
realizations of the disorder, the probability that the randonry conditions, the random walk will never reach a stationary

walker will jump from sitei to sitei+1, given that it has
made the same jumk times after then previous visits, is

state. This is reminiscent of systems out of equilibrium.
Another interesting observation is that one can easily cal-

p2 . This is the transition probability, which is consistent, in culate the probability of a realization of the process, i.e., of a
a conditional way, to the past history of the process. Thliven history{x():7=11}. This is indeed given simply by
history of the process is in general encoded in the effectivé{ni,dt=11i[n;+1]7* [11]. Note that to obtain such a

distribution of the variablep; at timet, which was named
“run time statistics” in[4]. In our case the distribution of
p; is parametrized by only two numbensandk; , and there-

fore a direct expression of the effective dynamics in terms o

quantity in the RRW, one needs to evaluate it for a given
realization of the disorder and then average over all realiza-
tions.

¢ The diffusion law 8x~ (Int)? can be understood, in the

k; andn, only is possible. The structure of the memory cancontext of the RWM, with the following argument. First we

be described by placing a Polya urn on each [sitd.

The model defined by Edq2) will be hereafter called a
random walk with memoryRWM). Its evolution is defined
as follows: define on each siieof the lattice two integer
“dynamical” variablesn; ; andk; ;, which count the number
of visits on sitei and the number of jumps—i+1. At time
t=0, n; o=k;j =0 and the walker is at site=0. At timet, if
the random walker is at sité, then with probability
pﬁn,kn it will move to sitei +1 andk; ;. ;=k; ;+ 1. Other-

wise the walker moves to site- 1 andk; (., =K; ;. In either

casen; +1="N; ¢+ 1 increases by one. This process, by con-
struction, is expected to reproduce the same results of thle

RRW with a random realization dfp;}. In the RWM, the

transition probabilities depend on the dynamical variable

{ki t,n; 1} and therefore evolve in time. On the other hand, i

the RRW, the transition probabilitigs are fixed before the

process starts. The equivalence of the dynamics of the twQ
walkers results from the fact that each realization of the>
RWM asymptotically singles out a realization of the disor-

der, in the sense thzanﬁit'ki P ast—o, wherep; is a
uniform random number irﬁO,l]. This has been explicitly

note that the values df; and n; on different sites are not
independent. For example it is easy to check thak;n; and
X;=Zi(2k;—n;). In generaln;=Kk;_1+n;,1—Kj; 1. In this
relation thek’s are distributed uniformly between 0 and the
n's. Then, approximately, this relation has the form
n;.1=C;n; with C; a random variable. In other words, the
variable Im; will have the shape of a random walk ovier
which means that typically the maximum value rgf for i
e[0,L(t)] will be ny,a—expyL(t). Since this value will also
dominate the sumZX;n;=t, we can conclude that
L(t)~ (Int)2.

One striking feature of the RRW is the lack of time trans-
ational invariance. It was pointed o(i8] that two times
correlation functions are not functions of the difference of

n%he times, as is normally the case, but also depend on the

waiting” time (i.e., the smallest time This was related in
Ref.[8] to the aging phenomena observed in spin glasses and
lasses. The calculation GA A, ,), whereA, is any observ-
able, depends only on processes between tinaeslt + 7. If

the transition probabilities involved in these process are con-
stant in time, time translation invariance follows naturally.
The lack of time translational invariance is no surprise in the

checked in numerical simulations, but it can also be arguegkwM, because the transition probabilities explicitly depend

from the distributiond P(p;|n,k)/dp of p;. This is indeed
sharply peaked around the mean vapﬁg with a width of
order 1A/n. The statistics of the asymptotic value pﬁ_k as

on the “waiting” time t. This point can hardly be appreci-
ated in the framework of the RRW, where the transition
probabilities are fixed from the beginning. The absence of

n—oo can be explicitly shown to be that of uniform random quenched disorder in the RWM evidences the fact that aging
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effects result from local memory effects. These effects, as

shown by the equivalence of the RRW and RWM, are also o

present in disordered dynamical systems.

One might wonder what happens if instead of a uniform
distribution one considers a general distributip(p). It is
not difficult to show that all the above considerations hold

the same, apart from the specific form of the moments and of o6

the distribution ofp;(n). Indeed Eq(1) still holds. However,
when one inverts it to find the distributioshP(p|n,k) one
has to account for the fact that the probability that
p=pi<p+dpis ¢(p)dp with ¢(p)#1 in general. In prac-
tice Eq. (2) is slightly modified, but only up to factors of
ordern™ 1. For example, if

(P =T (a+B)x*" H1=x)P [T ()T (B)],

one findspj = (k+ B)/(n+ a+ B). Our numerical check of
the diffusion as a function o& for =1 confirms the de-
pinning transition fora>2 found by Derridg12].

To address the problem of localization we note that on[T)
each site the RWM can create a barrier. If the walker ha§v

failed to pass a site after visits, its probability to overcome
it at the next visit isp§ o= 1/(n+2). Even though this prob-
ability decreases, it decreases so slowly that any barrier wi
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FIG. 1. Probability density(p). The solid curve centered in
=0.5 is obtained foa=0.1 and is reminiscent of a random walk.

e dotted lines are previous stages of simulation. The solid curve
ith two peaks inpp=0 andp=1 refers to thea= — 0.1 case where
localization takes place.

IFrom this point of view the casa=0 is very peculiar. It is

sooner or later be overcome. This results from a straightforthe only case for which the distribution which is recovered

ward application of the Borel Cantelli lemn{d.0]. It is

by the dynamics is continuous. The cas€ 0 bears some

worth observing that this behavior is the probabilistic coun-resemblance to systems, such as the Hopfield mddalor

terpart of the “marginal” localization properties of the RRW

folding proteins,[14] where the phase space has a peculiar

[6]. Indeed it is easy to show, by the same argument, that irganization and the dynamics “localizes” on a particular

nppo—0, asn—o the RWM would surely localize, sooner

low energy state.

or later on some site. This marginality seems to be even The above model can be generalized straightforwardly to
stronger as suggested by the following argument. For anyiigher dimensiongl. This only requires the introduction of

regular distributiong(p), we foundnp§,0—>1 asn—oo, Let
us therefore generalize our model by taking

k1
m asin

) k+1
Th+2)

a

pn,k:

(4)

This describes a generalized symmetrji, (+pj ,_ =1)
random walk with memory. Note thatp) ,—1+27a. We
expect that fora<0 the walker localizes, whereas for
a>0, for large times, the dynamics becomes that of a ran
dom walker without disordeii.e., p;=1/2). This expectation
is based on the fact that the functié(x)=p} ,, seen as a
mapli.e., X, 1= f(x,) ] has two stable fixed point® and 1
and one unstable fixed poitin x=1/2) in the first case
(a<0) while in the second case the stability is revergad
are unstable and 1/2 is stahl®ur problem is not a map, but
it is similar (it has also randomnessHowever, numerical

d dynamical variable”, j=1, ... d, one for each direc-
tion on each site. An even simpler generalization is the case
of ad dimensional random walker with random traps: Assign
a uniform variablep; €[ 0,1] to each site of the lattice. If the
walker is on sité at timet, with probability p; it remains on
the same site at+ 1, and with probability T p; it diffuses

to one of the neighbor sites. Still we can U‘Hﬂ?,ki for the
probability of jumping out of sita@, conditional ton; visits,
andk; previous jumps out of the trap. It is easy to see how
the diffusion law is modified in this case. Indeed, apart from
the fact that the walker can spend a time>-1 over a given
site before jumping to the next one, the diffusion is the same.
This means thatx>~N where N is the number of sites
visited (i.e., the number of jumpsThis is related to the time

t by summing all the times spent on different sites:
t==,_,"n;. This sum is dominated by the large values.
The probability that the walker has been trappedrfosteps

investigation shows that our expectation is correct. Fomon sitei is (n;+ 1) 1. The probability that it will jump out of

a<0 the walker localizes, whereas far-0 all the transition
probabilitiesp;— 1/2 ast—co. In other words, as shown in

the trap ispﬁi’(): 1/(n;+2). Therefore the distribution af;
is D(n)=[(n+1)(n+2)] 1. This means that, foN>1,

Fig. 1, the dynamics recovers different distributions of thetinlenlenN, which vyields the diffusion law

disorder in the three cases:
#(p)=38(p)+38(p—1) for a<o0,
d(p)=1 fora=0,

#(p)=38(p—3) for a>0. (5

t~ ox2Iné&x%. We checked the logarithmic corrections to the
diffusion numerically. In this case, using the generalized
model of Eq.(4), it is easy to find thaD(n)~n~2"272,
Therefore, fora>0, the above argument yields the standard
diffusion 8x>~t, whereas fom<0 one finds anomalous dif-
fusion ox2~t1"27_ Also in this case, therefore, disorder
dynamics appears to be a borderline case.
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In conclusion, we have derived and discussed somaealing[15] procedure used to find optimal configurations in
simple models of random walks which reproduce the behaveisordered systems. The annealing procedure has indeed the
ior of diffusion in disordered mediavithout specifying the  drawback that, once the disorder realization is fixed, the
disorder. We have seen that the dynamics itself retrieves &arting configuration of the dynamical variables may be
realization of the disorder with the proper statistical proper-‘far” from a reasonably good optimal state. Using the above
ties. Our results may well be used to generate dynamically gesults would instead produce dynamically a realization of

random realization of the disorder in any model withne gisorder which is “consistent” with the configuration of
quenched variables. It is tempting to conjecture that such age dynamical variables.

algorithm could provide an alternative to the simulated an-
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