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The problem of a random walk in disordered media is mapped into a model of a random walk with memory.
The latter model, as opposed to the former one, does not make reference to a particular realization of the
disorder. The equivalence of the two models implies that the latter model retrieves dynamically a realization of
disorder; the only one which is consistent with its dynamics. In this latter approach to the dynamics in
disordered media, effects of memory, aging and the peculiar localization properties of the random walker,
appear quite natural.@S1063-651X~96!50808-1#

PACS number~s!: 05.40.1j, 66.30.2h, 63.90.1t

The dynamics of disordered systems is a very active sub-
ject of research of statistical physics. In nonequilibrium sys-
tems, such as driven interface growth@1# and charge density
waves,@2# disorder leads to very interesting effects, such as
depinning transitions, creep phenomena, and self-
organization. In out of equilibrium systems, like spin glasses,
aging effects arise which, at least at a mean field level, has
been related to the lack of time translational invariance and
the failure of fluctuation dissipation relations@3#. The main
complication brought by the presence of disorder is that, in
order to compute a physical quantity, apart from the ‘‘dy-
namic’’ average over different stochastic time evolutions,
quenched dynamics requires a second average over the real-
izations of disorder. This, operationally, implies that one has
to evolve the system in several disorder configurations and at
the end average the result over the realizations of disorder.
On one hand, the dynamics explicitly depends on the particu-
lar realization of the disorder~typically through transition
rates!. On the other, in most systems, one expects the physi-
cal quantities to be self-averaging and therefore to depend
weakly on the disorder configuration. This situation is rather
unsatisfactory, in our opinion, because only after this second
average over disorder it is possible to appreciate the general
features of the dynamics. It has recently been pointed out@4#
that this problem can be overcome in nonequilibrium models
based on extreme dynamics, by appealing to an annealed
dynamics~we shall use this term as opposed to quenched
dynamics! which does not make reference to a particular
realization of disorder. The advantage of this point of view is
that only the average over different stochastic time evolu-
tions needs to be taken: the effective dynamics is indeed
such that the averages over disorder are taken in ‘‘run time,’’
i.e., at each time step, by the process itself. Moreover, this
approach provides also the statistical weight of the history of
the process, which is hardly available in dynamics with dis-
order. The key point, in the derivation of such annealed dy-
namics, is that the future evolution has to be statistically
consistent with the past history. The mathematical translation
of this principle relies on the concept of conditional probabil-
ity. The process thus acquires time dependences, which natu-
rally explain the emergence of memory effects in quenched
dynamics. It has also been shown that, from this point of
view, the relation between extremal dynamics and self-

organization is a simple consequence of a more general re-
lation between dynamical processes with memory and self-
organization@5#.

The purpose of this paper is to apply the same consider-
ations to an equilibrium system. We shall deal with the sim-
plest such system, i.e., a one-dimensional random walk in
random environment. For this we will derive the exact cor-
responding annealed dynamics. This dynamics, by definition,
does not depend on any particular realization of the disorder.
However, as we shall see, the process has the same statistical
properties. Asymptotically, for large times, the process
singles out a particular realization of the disorder, which is
the only one which is consistent with the past history of the
process. A simple generalization of the dynamics with
memory we find, shows that, interestingly enough, the disor-
dered dynamics lies on the borderline between random dy-
namics and deterministic dynamics. The random walker, in
the latter case, will sooner or later localize on some site.
Finally, we shall generalize our arguments to the problem of
a random walk with traps and draw some conclusions.

The random random walk~RRW! on a line is defined by
assigning at each sitei50,61,62, . . . a random variable
piP@0,1# drawn from a distribution P$p<pi
,p1dp%5f(p)dp. The evolution of the positionxt of the
RRW is defined byxt115xt11 with probability pxt and

xt115xt21 otherwise. In spite of its simplicity this model
has been studied by many authors as a toy model for local-
ization, @6# depinning transitions,@7# and aging effects@8#.
The most striking feature is that the diffusion is extremely
slow: the typical size visited by the walker after a timet is
dx;(lnt)2. Comparing this result, originally derived rigor-
ously by Sinai,@9# with the diffusion of a random walk with-
out disorder,dx;At, suggests that disorder has really dra-
matic effects on the dynamics.

In order to introduce our model, let us consider the case of
a uniform distribution f(p)51. Imagine observing the
walker in its motion, without knowing the realization$pi% of
the disorder. The only information available is what one
sees, namely, the numberni ,t of times that the random
walker has visited sitei and the numberki ,t of times in
which it has moved from sitei to sitei11. As we shall now
show, it is possible, using this information, to describe a
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RRW even if the values ofpi are not known. This is accom-
plished by observing that the probability that the number of
right jumps i→ i11 is k, given that sitei has been visited
n times and the transition probability ispi5p, is simply
given by the binomial distribution

P~kun,p!5S nkD pk~12p!n2k, ~1!

where the notationP(AuB) stands for the probability of the
eventA, conditional to the occurrence ofB. Regardingk as
the ‘‘effect’’ of the ‘‘cause’’ p, we can invert this statistical
relation to obtain the probability dP(pun,k) that
p<pi,p1dp given k and n. Using Bayes rule of causes
~see, @10# p. 124!, it is easy to find that
dP(pun,k)5(n11)P(kun,p)dp. From this we can obtain
an ‘‘effective’’ transition probability

pn,k
a 5E dP~pun,k!p5

k11

n12
, ~2!

where the last equality holds forf(p)51 ~see later!. The
content of Eq.~2! is that, among all the processes and all the
realizations of the disorder, the probability that the random
walker will jump from sitei to site i11, given that it has
made the same jumpk times after then previous visits, is
pn,k
a . This is the transition probability, which is consistent, in

a conditional way, to the past history of the process. The
history of the process is in general encoded in the effective
distribution of the variablepi at time t, which was named
‘‘run time statistics’’ in @4#. In our case the distribution of
pi is parametrized by only two numbersni andki , and there-
fore a direct expression of the effective dynamics in terms of
ki andni only is possible. The structure of the memory can
be described by placing a Polya urn on each site@10#.

The model defined by Eq.~2! will be hereafter called a
random walk with memory~RWM!. Its evolution is defined
as follows: define on each sitei of the lattice two integer
‘‘dynamical’’ variablesni ,t andki ,t , which count the number
of visits on sitei and the number of jumpsi→ i11. At time
t50, ni ,05ki ,050 and the walker is at sitei50. At time t, if
the random walker is at sitei , then with probability
pni ,t ,ki ,t
a it will move to site i11 andki ,t115ki ,t11. Other-

wise the walker moves to sitei21 andki ,t115ki ,t . In either
caseni ,t115ni ,t11 increases by one. This process, by con-
struction, is expected to reproduce the same results of the
RRW with a random realization of$pi%. In the RWM, the
transition probabilities depend on the dynamical variables
$ki ,t ,ni ,t% and therefore evolve in time. On the other hand, in
the RRW, the transition probabilitiespi are fixed before the
process starts. The equivalence of the dynamics of the two
walkers results from the fact that each realization of the
RWM asymptotically singles out a realization of the disor-
der, in the sense thatpni ,t ,ki ,t

a →pi as t→`, wherepi is a

uniform random number in@0,1#. This has been explicitly
checked in numerical simulations, but it can also be argued
from the distributiondP(pi un,k)/dp of pi . This is indeed
sharply peaked around the mean valuepn,k

a with a width of
order 1/An. The statistics of the asymptotic value ofpn,k

a as
n→` can be explicitly shown to be that of uniform random

variables by analyzing the moments of the effective transi-
tion probabilitypi(ni)5pni ,ki

a . Dropping thei index for the

moment, one observes that at the (n21)st visit p(n21)q,
with probability p(n21), increases to
@(n11)p(n21)11/n12#q while with probability
12p(n21) it becomes@(n11)p(n21)/n12#q. Taking
the average over realizations leads to a recursion relation for
the moments ofp(n) which, with a little algebra, can be
solved to find

Mq~n!5^p~n!q&5
1

n11(k51

n11 S k

n12D
q

. ~3!

Note thatM1(n)51/2 for all n. Moreover, all central mo-
ments^@p(n)2^p(n)&#q& with q odd vanish identically. For
n@1, one easily findsMq(n)5(11q)211O(n21), i.e., the
moments ofp(n) tend indeed to those of a uniform distribu-
tion in @0,1#. Therefore, the distribution of the transition
probabilities, for a RWM in a box of sizeL with periodic
boundary conditions, will asymptotically tend to ad function
around a random valuepi whose statistics is uniform in
@0,1#. However, strictly speaking, even with periodic bound-
ary conditions, the random walk will never reach a stationary
state. This is reminiscent of systems out of equilibrium.

Another interesting observation is that one can easily cal-
culate the probability of a realization of the process, i.e., of a
given history$x(t):t51,t%. This is indeed given simply by
P$ni ,t%5) i@ni ,t11#21 @11#. Note that to obtain such a
quantity in the RRW, one needs to evaluate it for a given
realization of the disorder and then average over all realiza-
tions.

The diffusion lawdx;(lnt)2 can be understood, in the
context of the RWM, with the following argument. First we
note that the values ofki and ni on different sites are not
independent. For example it is easy to check thatt5( ini and
xt5( i(2ki2ni). In generalni5ki211ni112ki11. In this
relation thek’s are distributed uniformly between 0 and the
n’s. Then, approximately, this relation has the form
ni11.Cini with Ci a random variable. In other words, the
variable lnni will have the shape of a random walk overi ,
which means that typically the maximum value ofni for i
P@0,L(t)# will be nmax;expAL(t). Since this value will also
dominate the sum ( ini5t, we can conclude that
L(t);(lnt)2.

One striking feature of the RRW is the lack of time trans-
lational invariance. It was pointed out@8# that two times
correlation functions are not functions of the difference of
the times, as is normally the case, but also depend on the
‘‘waiting’’ time ~i.e., the smallest time!. This was related in
Ref. @8# to the aging phenomena observed in spin glasses and
glasses. The calculation of^AtAt1t&, whereAt is any observ-
able, depends only on processes between timest andt1t. If
the transition probabilities involved in these process are con-
stant in time, time translation invariance follows naturally.
The lack of time translational invariance is no surprise in the
RWM, because the transition probabilities explicitly depend
on the ‘‘waiting’’ time t. This point can hardly be appreci-
ated in the framework of the RRW, where the transition
probabilities are fixed from the beginning. The absence of
quenched disorder in the RWM evidences the fact that aging
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effects result from local memory effects. These effects, as
shown by the equivalence of the RRW and RWM, are also
present in disordered dynamical systems.

One might wonder what happens if instead of a uniform
distribution one considers a general distributionf(p). It is
not difficult to show that all the above considerations hold
the same, apart from the specific form of the moments and of
the distribution ofpi(n). Indeed Eq.~1! still holds. However,
when one inverts it to find the distributiondP(pun,k) one
has to account for the fact that the probability that
p<pi,p1dp is f(p)dp with f(p)Þ1 in general. In prac-
tice Eq. ~2! is slightly modified, but only up to factors of
ordern21. For example, if

f~p!5G~a1b!xa21~12x!b21/@G~a!G~b!#,

one findspn,k
a 5(k1b)/(n1a1b). Our numerical check of

the diffusion as a function ofa for b51 confirms the de-
pinning transition fora.2 found by Derrida@12#.

To address the problem of localization we note that on
each site the RWM can create a barrier. If the walker has
failed to pass a site aftern visits, its probability to overcome
it at the next visit ispn,0

a 51/(n12). Even though this prob-
ability decreases, it decreases so slowly that any barrier will
sooner or later be overcome. This results from a straightfor-
ward application of the Borel Cantelli lemma@10#. It is
worth observing that this behavior is the probabilistic coun-
terpart of the ‘‘marginal’’ localization properties of the RRW
@6#. Indeed it is easy to show, by the same argument, that if
npn,0

a →0, asn→` the RWM would surely localize, sooner
or later on some site. This marginality seems to be even
stronger as suggested by the following argument. For any
regular distributionf(p), we foundnpn,0

a →1 asn→`. Let
us therefore generalize our model by taking

pn,k
a 5

k11

n12
1asinS 2p

k11

n12D . ~4!

This describes a generalized symmetric (pn,k
a 1pn,n2k

a 51)
random walk with memory. Note thatnpn,0

a →112pa. We
expect that fora,0 the walker localizes, whereas for
a.0, for large times, the dynamics becomes that of a ran-
dom walker without disorder~i.e.,pi51/2). This expectation
is based on the fact that the functionf (x)[pn,xn

a seen as a
map@i.e., xn115 f (xn)# has two stable fixed points~0 and 1!
and one unstable fixed point~in x51/2) in the first case
(a,0) while in the second case the stability is reversed~0,1
are unstable and 1/2 is stable!. Our problem is not a map, but
it is similar ~it has also randomness!. However, numerical
investigation shows that our expectation is correct. For
a,0 the walker localizes, whereas fora.0 all the transition
probabilitiespi→1/2 ast→`. In other words, as shown in
Fig. 1, the dynamics recovers different distributions of the
disorder in the three cases:

f~p!5 1
2d~p!1 1

2d~p21! for a,0,

f~p!51 for a50,

f~p!5d~p2 1
2 ! for a.0. ~5!

From this point of view the casea50 is very peculiar. It is
the only case for which the distribution which is recovered
by the dynamics is continuous. The casea,0 bears some
resemblance to systems, such as the Hopfield model@13# or
folding proteins,@14# where the phase space has a peculiar
organization and the dynamics ‘‘localizes’’ on a particular
low energy state.

The above model can be generalized straightforwardly to
higher dimensionsd. This only requires the introduction of
d dynamical variableski

( j ) , j51, . . . ,d, one for each direc-
tion on each site. An even simpler generalization is the case
of ad dimensional random walker with random traps: Assign
a uniform variablepiP@0,1# to each site of the lattice. If the
walker is on sitei at timet, with probabilitypi it remains on
the same site att11, and with probability 12pi it diffuses
to one of the neighbor sites. Still we can usepni ,ki

a for the

probability of jumping out of sitei , conditional toni visits,
andki previous jumps out of the trap. It is easy to see how
the diffusion law is modified in this case. Indeed, apart from
the fact that the walker can spend a timeni.1 over a given
site before jumping to the next one, the diffusion is the same.
This means thatdx2;N whereN is the number of sites
visited ~i.e., the number of jumps!. This is related to the time
t by summing all the times spent on different sites:
t5( i51

Nni . This sum is dominated by the largeni values.
The probability that the walker has been trapped forni steps
on sitei is (ni11)21. The probability that it will jump out of
the trap ispni ,0

a 51/(ni12). Therefore the distribution ofni
is D(n)5@(n11)(n12)#21. This means that, forN@1,
t5( i51

Nni;NlnN, which yields the diffusion law
t;dx2lndx2. We checked the logarithmic corrections to the
diffusion numerically. In this case, using the generalized
model of Eq. ~4!, it is easy to find thatD(n);n2222pa.
Therefore, fora.0, the above argument yields the standard
diffusion dx2;t, whereas fora,0 one finds anomalous dif-
fusion dx2;t112pa. Also in this case, therefore, disorder
dynamics appears to be a borderline case.

FIG. 1. Probability densityf(p). The solid curve centered in
p50.5 is obtained fora50.1 and is reminiscent of a random walk.
The dotted lines are previous stages of simulation. The solid curve
with two peaks inp50 andp51 refers to thea520.1 case where
localization takes place.
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In conclusion, we have derived and discussed some
simple models of random walks which reproduce the behav-
ior of diffusion in disordered mediawithout specifying the
disorder. We have seen that the dynamics itself retrieves a
realization of the disorder with the proper statistical proper-
ties. Our results may well be used to generate dynamically a
random realization of the disorder in any model with
quenched variables. It is tempting to conjecture that such an
algorithm could provide an alternative to the simulated an-

nealing@15# procedure used to find optimal configurations in
disordered systems. The annealing procedure has indeed the
drawback that, once the disorder realization is fixed, the
starting configuration of the dynamical variables may be
‘‘far’’ from a reasonably good optimal state. Using the above
results would instead produce dynamically a realization of
the disorder which is ‘‘consistent’’ with the configuration of
the dynamical variables.
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